US009065772B2

a2 United States Patent

Bartfai-Walcott et al.

US 9,065,772 B2
*Jun. 23, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

DYNAMICALLY MODIFYING QUALITY OF
SERVICE LEVELS FOR RESOURCES
RUNNING IN A NETWORKED COMPUTING
ENVIRONMENT

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Katalin K. Bartfai-Walcott, E1 Dorado
Hills, CA (US); Gregory J. Boss,
Saginaw, MI (US); Christopher J.
Dawson, Arlington, VA (US); Rick A.
Hamilton, I1, Charlottesville, VA (US)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/153,520

Filed: Jan. 13, 2014

Prior Publication Data
US 2014/0129710 A1 May 8, 2014
Related U.S. Application Data

Continuation of application No. 13/171,518, filed on
Jun. 29, 2011, now Pat. No. 8,631,154.

Int. Cl1.

HO4L 12/24 (2006.01)

HO4L 12/851 (2013.01)

U.S. CL

CPC ... HO4L 41/5038 (2013.01); HO4L 41/5025

(2013.01); HO4L 47/2433 (2013.01)

Field of Classification Search
CPC HO4L 29/06523; HO4L 29/08954;
HO4L 41/5003-41/5025; HO4L 41/5067,
HO4L 67/32-67/322

USPC 709/223-226, 232-235, 238-240
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,205,149 Bl
6,882,642 Bl *

3/2001 Lemaire et al.
4/2005 Kejriwal etal. 370/388

(Continued)
OTHER PUBLICATIONS

Mell et al., “The NIST Definition of Cloud Computing”, National
Institute of Standards and Technology, Information Technology
Laboratory, Version 15, Oct. 7, 2009, 2 pages.

(Continued)

Primary Examiner — Brendan Higa

(74) Attorney, Agent, or Firm — William E. Schiesser;
Keohane & D’ Alessandro PLLC; Maxine L. Barasch

(57) ABSTRACT

Embodiments of the present invention provide an approach
for dynamically modifying Quality of Service (QoS) levels
for resources (e.g., applications, processes, services, etc.)
running in a networked computing environment. Specifically,
embodiments of the present invention dynamically adjust
transport level networking QoS parameters based on associ-
ated service level agreements (SLA) term. In a typical
embodiment, a set of service level requirements associated
with a resource running in the networked computing environ-
ment will first be identified (e.g., in a computer data struc-
ture). Then, the set of service level requirements will be
mapped to aset of QoS parameters associated with a transport
layer of the networked computing environment. A current
performance of the resource within the transport layer will
then be determined. Once the current performance has been
determined, it will be further determined whether the current
performance meets the set of service level requirements.
Based on this determination/comparison, the set of QoS
parameters can be adjusted accordingly.

17 Claims, 8 Drawing Sheets

LEVEL

SERVICE

AGREEMENTS

5
QUALITY OF SERVICE MODIFICATION |

|

‘ i L-80
| R SERVICE LEVEL ENCRE

i 92~ AGREEMENT QUALITY

i GF SERVICE SYSTEM .
|]
i 94 96 !
! Y ‘ /

! SERVICE LEVEL NETWORK PACKET

I | AGREEMENT JNSERTION INSPECTION

! SYSTEM SYSTEM

]

<_TRANSPCRT LAYER

100

102

©Cr

NETWORK HARDWARE

US 9,065,772 B2

Page 2
(56) References Cited 2009/0241170 Al* 9/2009 Kumaretal.cccoe.... 726/3
2011/0137772 Al 6/2011 Davis, III et al.
U.S. PATENT DOCUMENTS 2012/0042060 Al* 2/2012 Jackowski et al. 709/224
2012/0078994 Al* 3/2012 Jackowski et al. 709/202
7,290,028 B2 10/2007 Brabson et al. 2012/0218924 Al 8/2012 Bhalla
7,376,082 B2 5/2008 Barzilai et al.
7,505,411 B2 3/2009 Cahn OTHER PUBLICATIONS
;:;;g:géj Eé zgg}? gfl%ikdfl;?}l; Fortuna, C etal., “Dynamic Composition of Services for End-to-End
7,940,756 Bl 5/2011 Duffy et al. Information Transport”, Copyright 2009 IEEE, 14 pages.
8,112,450 B2 2/2012 Thomas et al. “Brocade One Data Center Cloud-Optimized Networks”, Position
8,213,433 B2 7/2012 Zhang Paper, Copyright 2011 Brocade Communications Systems, Inc., 5
2002/0065907 Al 5/2002 Cloonan et al. pages.
2002/0147828 Al 10/2002 Chen et al. Brendan Y. Higa, USPTO Office Action, U.S. Appl. No. 13/171,518,
2002/0181462 Al 12/2002 Surdila et al. Notification Date Mar. 1’ 2013’ 23 pages.
2003/0208523 Al 11/2003 Gopalan et al. Brendan'Y. Higa, USPTO Notice of Allowance and Fee(s) Due, U.S.
2004/0090923 Al 5/2004 Kan et al. .
Appl. No. 13/171,518, Date Mailed Sep. 5, 2013, 14 pages.
2005/0088977 Al 4/2005 Roch et al. - “ . N v
2006/0129650 AL* 6/2006 Ho ot al. ooooroooe 709/207 Maitland, J., “Keeping Control Isn’t Easy”, Chapter 4: Cloud-Based
: nirastructure, Search-CloudComputing.com, 1she ct. s
2007/0156919 Al 7/2007 Potti et al. 113f Search-CloudComputing com, Published Oct. 2009
2007/0263537 Al 11/2007 Cahn pages.
2009/0010264 Al* 1/2009 Zhang 370/395.21
2009/0207731 A1 8/2009 Carlson et al. * cited by examiner

US 9,065,772 B2

Sheet 1 of 8

Jun. 23, 2015

U.S. Patent

| ‘Ol
(S130iA30
TNELGE
i f
1
ALAVAY YUOMLEN amo%wwz_ AV
/
Q A [/ /
22 2
e
A
_ o ze _
~ 0% / LINN
v INISSII0Md
WALSAS \
PVHOLS ol
WY
% N\
AMOWIN o¢
/
9¢ AAES/NELSAS W3LNAw0g | 2

US 9,065,772 B2

Sheet 2 of 8

Jun. 23, 2015

U.S. Patent

¢ Old
[oy

05 = %

s N4 e

US 9,065,772 B2

Sheet 3 of 8

Jun. 23, 2015

U.S. Patent

¢ ol

o9
i
mmﬁmm suaiss sl St SIBMII0S LB leMp.E
MO uorealddy @M @IS ARy
seqeg yomay Sboway sBeioig QW Fona s sowesue

29

U8 &= el

UorjezifemJi

SRR suoeanddy Syiomgay 5321015 SIONIGS
{enLIA [erLIA [eNHIA [ENHIA [ENLAA

0 2] B B

L0} EIJIpOW
(S0D) oMaS
J0 Aend

/

ustliageur)y

Wauigng pue /7 uswaSeueyy L0 1S Suonld pue Suuoisinolg
Buwed ¥15 /7 18Aa7 801A8S I€¥od 150 Sunietey 3011053y 99
/

SPROPIOM

Kisnpsa JuawwaFeuep

mmeo%xwmm W sy BuISSa301d uarjeanp3 m_mw} P77 wopetey
sezw__mo)/ ey /sty e /7 wnossep Em%o_m\,mg pue Buddeyy

US 9,065,772 B2

Sheet 4 of 8

Jun. 23, 2015

U.S. Patent

7 Ol
NOSSHENVAL U8 QY TWNGIS I | o
65hd TYISAHd
(0713 W) ONISS2H0Y YOS AHd
28] W Y1 S
T ONISSIH00Y YOO 2 NOLLYNIWEL30 FLvd
0o O e
ALTEYTE GNY SNOLLGANNOD ONI-0LGg
oL LHOJSNYL SINEHOS
NOLLYOINGVANOD LSORRLN T
Y% NOISS3S
NOTLINEONE ' NOILY LNAS 334 V1V "
y1] NOLLY NS4
NOLLVOMGdY 0L SS300%d YEOMIH -
7L NOLLYOlddY

OL

US 9,065,772 B2

Sheet 5 of 8

Jun. 23, 2015

U.S. Patent

Os-

FIYMAYYH HEOMLIN

001

YIAVT LHOJSNYHL

s s ey e e i e e o e S i — o — o —

WELSAS WALSAS
NOILI3dSNI NOILYISNI INFNTFHBY
LTINVd HHOMLIN TIATT FOIAYIS
’ S
o6 # 6
]
WALSAS 30UAEES 40
ALTYNO INANS3MEY ~~75
WO AT IS

NOILYOIHICOW 301A%3S 40 ALTWNO

L s i T o i e e . LR Al it Py ey i s o s AR ot Ly W oy P it At . e AN AARE iy 1 P

g6

SINIWI3PY
T
EAINEN

US 9,065,772 B2

Sheet 6 of 8

Jun. 23, 2015

U.S. Patent

T L40d

AT oL yivaHsnd s
3

9 Ol

A1 yIva We0REd 7

LERSIIAN

¥15 MO1
¢ IS

7
doll

-t

dIHLONY OL N¥IA
N0 WO VIVA AJ0D T

V1S HOH
T 30AYSS

N
YOIl

US 9,065,772 B2

Sheet 7 of 8

Jun. 23, 2015

U.S. Patent

L9l

161

_.||||

AYYSSIIIN 41 SO0 AJIQOW-£
I

o5 _~1__NOILYZIIEN HIQIMONYS INZH800 NIRE1IC9 |
)

mm_

WILSAS SO0 YIS NI SSOHD -6
!

o

LIV N OV VS dN SHOI §3.LN0¥-1
1

co1

W3LSAS SO0 Y18 OUNFFH01S-E

I

Nm\.—

SINTANIYLLY Y15 LNGHENI NINAL30-¢
[|

-1

YIS INZHHNO NIMILIC-T

US 9,065,772 B2

Sheet 8 of 8

Jun. 23, 2015

U.S. Patent

g oOld

eind

SYILIYIYd
FIRAS
40 ALIVND LSTQY

i

ON

{
SINGWHINOY
TIATT A
S

b

3087053 ONINNTY
40 FONYIE0443d
INGRIND
NINGELET
]

A

S LTNHYd
F0IA3S 40 ALMWND
0L SINNFUINOT

“3A3T 301A3S dYIN
[

1L

SINFNMING 3
AT

S3A

FOIA35 A41IN30I

US 9,065,772 B2

1

DYNAMICALLY MODIFYING QUALITY OF
SERVICE LEVELS FOR RESOURCES
RUNNING IN A NETWORKED COMPUTING
ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present patent document is a continuation of U.S.
patent application Ser. No. 13/171,518, filed Jun. 29, 2011,
entitled “DYNAMICALLY MODIFYING QUALITY OF
SERVICE LEVELS FOR RESOURCES RUNNING IN A
NETWORKED COMPUTING ENVIRONMENT?”, the dis-
closure of which is incorporated herein by reference.

TECHNICAL FIELD

Embodiments of the present invention generally relate to
Quality of Service (QoS) levels. Specifically, embodiments of
the present invention relate to dynamically modified QoS
levels for resources running in a networked computing envi-
ronment (e.g., a cloud computing environment).

BACKGROUND

The networked computing environment (e.g., cloud com-
puting environment) is an enhancement to the predecessor
grid environment, whereby multiple grids and other compu-
tation resources may be further enhanced by one or more
additional abstraction layers (e.g., a cloud layer), thus making
disparate devices appear to an end-consumer as a single pool
of seamless resources. These resources may include such
things as physical or logical computing engines, servers and
devices, device memory, and storage devices, among others.

Challenges can exist in maintaining agreed upon Quality of
Service (QoS) levels, especially in the transport layer of net-
worked computing environments. For example, QoS priori-
ties are typically established in advance based upon the type
of'data packet being sent (e.g., Transmission Control Protocol
(TCP) versus User Datagram Protocol (UDP)), the source
and/or destination of the network transmission, etc. Such
approaches may not adequately compensate for shifting pri-
orities or changes in agreement-based QoS requirements.

SUMMARY

In general, embodiments of the present invention provide
an approach for dynamically modifying Quality of Service
(QoS) levels for resources (e.g., applications, processes, ser-
vices, etc.) running in a networked computing environment.
Specifically, embodiments of the present invention dynami-
cally adjust transport level networking QoS parameters based
on associated service level agreement (SLA) terms. In a typi-
cal embodiment, a set of service level requirements associ-
ated with a resource running in the networked computing
environment will first be identified (e.g., in a computer data
structure). Then, the set of service level requirements will be
mapped to aset of QoS parameters associated with a transport
layer of the networked computing environment. A current
performance of the resource within the transport layer will
then be determined. Once the current performance has been
determined, it will be further determined whether the current
performance meets the set of service level requirements.
Based on this determination/comparison, the set of QoS
parameters can be adjusted accordingly.

A first aspect of the present invention provides a computer-
implemented method for dynamically modifying quality of

15

20

25

40

45

50

65

2

service levels for a resource running in a networked comput-
ing environment, comprising: identifying, in a computer data
structure, a set of service level requirements associated with
the resource; mapping the set of service level requirements to
a set of quality of service parameters associated with a trans-
port layer of the networked computing environment; deter-
mining a current performance of the resource within the
transport layer; determining whether the current performance
meets the set of service level requirements; and adjusting,
responsive to the set of service level requirements not being
met, the set of quality of service parameters.

A second aspect of the present invention provides a system
for dynamically modifying quality of service levels for a
resource running in a networked computing environment,
comprising: a bus; a processor coupled to the bus; and a
memory medium coupled to the bus, the memory medium
comprising instructions to: identify, in a computer data struc-
ture, a set of service level requirements associated with the
resource; map the set of service level requirements to a set of
quality of service parameters associated with a transport layer
of the networked computing environment; determine a cur-
rent performance of the resource within the transport layer;
determine whether the current performance meets the set of
service level requirements; and adjust, responsive to the set of
service level requirements not being met, the set of quality of
service parameters.

A third aspect of the present invention provides a computer
program product for dynamically modifying quality of ser-
vice levels for a resource running in a networked computing
environment, the computer program product comprising a
computer readable storage media, and program instructions
stored on the computer readable storage media, to: identify, in
a computer data structure, a set of service level requirements
associated with the resource; map the set of service level
requirements to a set of quality of service parameters associ-
ated with a transport layer of the networked computing envi-
ronment; determine a current performance of the resource
within the transport layer; determine whether the current
performance meets the set of service level requirements; and
adjust, responsive to the set of service level requirements not
being met, the set of quality of service parameters.

A fourth aspect of the present invention provides a method
for deploying a computer infrastructure for dynamically
modifying quality of service levels for a resource running in
a networked computing environment, comprising: providing
a computer infrastructure being operable to: identify, in a
computer data structure, a set of service level requirements
associated with the resource; map the set of service level
requirements to a set of quality of service parameters associ-
ated with a transport layer of the networked computing envi-
ronment; determine a current performance of the resource
within the transport layer; determine whether the current
performance meets the set of service level requirements; and
adjust, responsive to the set of service level requirements not
being met, the set of quality of service parameters.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more
readily understood from the following detailed description of
the various aspects of the invention taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a cloud computing node according to an
embodiment of the present invention.

FIG. 2 depicts a cloud computing environment according
to an embodiment of the present invention.

US 9,065,772 B2

3

FIG. 3 depicts abstraction model layers according to an
embodiment of the present invention.

FIG. 4 depicts an Open Systems Interconnect (OSI) stack
according to an embodiment of the present invention.

FIG. 5 depicts a system diagram according to an embodi-
ment of the present invention.

FIG. 6 depicts a service decomposition process flow dia-
gram according to an embodiment of the present invention.

FIG. 7 depicts a method flow diagram according to an
embodiment of the present invention.

FIG. 8 depicts another method flow diagram according to
an embodiment of the present invention.

The drawings are not necessarily to scale. The drawings are
merely schematic representations, not intended to portray
specific parameters of the invention. The drawings are
intended to depict only typical embodiments of the invention,
and therefore should not be considered as limiting the scope
of the invention. In the drawings, like numbering represents
like elements.

DETAILED DESCRIPTION

Tlustrative embodiments will now be described more fully
herein with reference to the accompanying drawings, in
which exemplary embodiments are shown. This disclosure
may, however, be embodied in many different forms and
should not be construed as limited to the exemplary embodi-
ments set forth herein. Rather, these exemplary embodiments
are provided so that this disclosure will be thorough and
complete and will fully convey the scope of this disclosure to
those skilled in the art. In the description, details of well-
known features and techniques may be omitted to avoid
unnecessarily obscuring the presented embodiments.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of'this disclosure. As used herein, the singular forms
“a”,“an”, and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. Further-
more, the use of the terms “a”, “an”, etc., do not denote a
limitation of quantity, but rather denote the presence of at
least one of the referenced items. It will be further understood
that the terms “comprises” and/or “comprising”, or
“includes” and/or “including”, when used in this specifica-
tion, specity the presence of stated features, regions, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other fea-
tures, regions, integers, steps, operations, elements, compo-
nents, and/or groups thereof.

As indicated above, embodiments of the present invention
provide an approach for dynamically modifying Quality of
Service (QoS) levels for resources (e.g., applications, pro-
cesses, services, etc.) running in a networked computing envi-
ronment. Specifically, embodiments of the present invention
dynamically adjust transport level networking QoS param-
eters based on associated service level agreement (SLA)
terms. In a typical embodiment, a set of service level require-
ments associated with a resource running in the networked
computing environment will first be identified (e.g., in a com-
puter data structure). Then, the set of service level require-
ments will be mapped to a set of QoS parameters associated
with a transport layer of the networked computing environ-
ment. A current performance of the resource within the trans-
port layer will then be determined. Once the current perfor-
mance has been determined, it will be further determined
whether the current performance meets the set of service level
requirements. Based on this determination/comparison, the
set of QoS parameters can be adjusted accordingly.

10

15

20

25

30

35

40

45

50

55

60

65

4

It is understood in advance that although this disclosure
includes a detailed description of cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as Follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed, automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active consumer
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as Follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure includ-
ing network, servers, operating systems, storage, or even
individual application capabilities, with the possible excep-
tion of limited consumer-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application-hosting environment configu-
rations.

Infrastructure as a Service (1aaS): the capability provided
to the consumer is to provision processing, storage, networks,

US 9,065,772 B2

5

and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as Follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10 is
only one example of a suitable cloud computing node and is
notintended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 10, there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/

20

25

30

40

45

6

server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types ofbus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
ten/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM, or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

The embodiments of the invention may be implemented as
a computer readable signal medium, which may include a
propagated data signal with computer readable program code
embodied therein (e.g., in baseband or as part of a carrier
wave). Such a propagated signal may take any of a variety of
forms including, but not limited to, electro-magnetic, optical,
or any suitable combination thereof. A computer readable
signal medium may be any computer readable medium that is
not a computer readable storage medium and that can com-
municate, propagate, or transport a program for use by or in
connection with an instruction execution system, apparatus,
or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium including,
but not limited to, wireless, wireline, optical fiber cable,
radio-frequency (RF), etc., or any suitable combination of the
foregoing.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a

US 9,065,772 B2

7

consumer to interact with computer system/server 12; and/or
any devices (e.g., network card, modem, etc.) that enable
computer system/server 12 to communicate with one or more
other computing devices. Such communication can occur via
1/0 interfaces 22. Still yet, computer system/server 12 can
communicate with one or more networks such as a local area
network (LAN), a general wide area network (WAN), and/or
a public network (e.g., the Internet) via network adapter 20.
As depicted, network adapter 20 communicates with the other
components of computer system/server 12 via bus 18. It
should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12. Examples include, but
are not limited to: microcode, device drivers, redundant pro-
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment 50 is depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as private, community, public, or
hybrid clouds as described hereinabove, or a combination
thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms, and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)
is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in FIG. 3 are intended to be
illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes. In one example, IBM® zSeries® sys-
tems and RISC (Reduced Instruction Set Computer) archi-
tecture based servers. In one example, IBM pSeries® sys-
tems, IBM xSeries® systems, IBM BladeCenter® systems,
storage devices, networks, and networking components.
Examples of software components include network applica-
tion server software. In one example, IBM WebSphere®
application server software and database software. In one
example, IBM DB2® database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide.)

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and pricing provide cost

10

15

20

25

30

35

40

45

50

55

60

65

8

tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. Consumer portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provides pre-ar-
rangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLLA. Further shown in management layer
is Quality of Service (QoS) modification, which represents
the functionality that is provided under the embodiments of
the present invention.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and consumer data storage and backup. As men-
tioned above, all of the foregoing examples described with
respect to FIG. 3 are illustrative only, and the invention is not
limited to these examples.

Itis understood that all functions ofthe present invention as
described herein typically may be performed by the QoS
modification functionality of management layer 64, which
can be tangibly embodied as modules of program code 42 of
program/utility 40 (FIG. 1). However, this need not be the
case. Rather, the functionality recited herein could be carried
out/implemented and/or enabled by any of the layers 60-66
shown in FIG. 3.

It is reiterated that although this disclosure includes a
detailed description on cloud computing, implementation of
the teachings recited herein are not limited to a cloud com-
puting environment. Rather, the embodiments of the present
invention are intended to be implemented with any type of
networked computing environment now known or later
developed.

As indicated above, embodiments of the present invention
provide an approach to dynamically adjust transport level
networking based on the service level agreements (SLAs)
defined for associated resources such as applications, pro-
cesses, services, etc. This approach helps to ensure that SLAs
can be met, particularly for large heterogeneous environ-
ments as may be found in cloud computing environment
installations.

One aspect of the embodiments of the present invention is
that priority and Quality of Service (QoS) delivered at the
transport level (e.g., Transmission Control Protocol/Internet
Protocol (TCP/IP)) may be dynamically calculated and modi-
fied/updated based on service levels associated with
resources. For example, a mission-critical application that is
being backed up may automatically change the QoS of the
TCP/IP packets to ensure that the backups complete on time,
oran important business process may be in jeopardy of failing
if priority is not given to a network transmission on a highly
utilized switch. An aspect of the present invention is that such
overriding concerns are given appropriate attention.

Referring now to FIG. 4, an illustrative Open Systems
Interconnect (OSI) stack 70 according to an embodiment of
the present invention is shown. As depicted, OSI stack 70
comprises the following layers:

US 9,065,772 B2

9

Application layer 72: This is the layer at which communi-
cation partners are identified, QoS is identified, user authen-
tication and privacy are considered, and any constraints on
data syntax are identified. This layer is typically not the appli-
cation itself, although some applications may perform appli-
cation layer functions.

Presentation layer 74: This is a layer (sometimes called the
syntax layer), usually part of an operating system, that con-
verts incoming and outgoing data from one presentation for-
mat to another (e.g., from a text stream into a popup window
with the newly arrived text).

Session layer 76: This layer sets up, coordinates, and ter-
minates conversations, exchanges, and dialogs between the
applications at each end. Session layer 76 is associated with
session and connection coordination.

Transport layer 78: This layer manages the end-to-end
control (e.g., determining whether all packets have arrived)
and error-checking. Transport layer 78 works to ensure com-
plete data transfer.

Network layer 80: This layer handles the routing ofthe data
(e.g., sending data in the right direction to the right destina-
tion on outgoing transmissions and receiving incoming trans-
missions at the packet level). Network layer 80 performs
routing and forwarding.

Data link layer 82: This layer provides synchronization for
the physical level and does bit-stuffing for strings of 1’s in
excess of 5. Data link layer 82 furnishes transmission proto-
col knowledge and management.

Physical layer 84: This layer conveys the bit stream
through the network at the electrical and mechanical level.
Physical layer 84 provides the hardware means of sending
and receiving data on a carrier.

In general, embodiments of the invention dynamically
modify QoS parameters for running resources at transport
layer 78 based on associated service level requirements (e.g.,
as set forth in associated SLAB).

Referring now to FIG. 5, a system diagram according to an
embodiment of the present invention is shown. As depicted in
FIG. 5, a QoS modification engine (engine 90) is provided. In
general, engine 90 can be implemented as one or more pro-
grams such as program 40 of FIG. 1 and is capable of imple-
menting the functionality discussed herein such as that
depicted by QoS modification function of management layer
64 of FIG. 3. Moreover, engine 90 generally comprises SLA
QoS system 92, SLA insertion system 94, and network packet
inspection system 96. These systems generally have the fol-
lowing functions:

SLA QoS system 92 accesses a database 98 that stores SLA
related information for the services, applications and business
processes currently being executed in the networked comput-
ing environment. For example, a credit card processing ser-
vice may have an SLA that states that the process should take
no more than ten seconds. A batch job may have an SLA
which states that the process should take no more than 4
hours. SLA QoS system 92 takes such SLLAs and writes the
SLAs to a database that is accessible by network package
inspection system 96. Once stored, the SLA QoS system 92
continues to monitor the services and business processes, and
updates the database with priorities of each based on current
SLA attainment. For example, the credit card processing and
batch job services may have an entry in the database similar to
the following:

10

20

25

30

35

40

45

50

55

60

10
Unique Transaction SLA Current
Service Identifier Identification Metric Status Flag
Credit 1234 1 10 5 seconds Medium
Card seconds remaining
Batch 4321 2 4 3 hours Low
Job hours remaining

SLA QoS system 92 continually checks processing of the
service and updates the database. For example, after a period
of time, the table may change to:

Transaction
Unique Identification SLA Current
Service Identifier SLA Metric ~ Status Flag
Credit 1234 1 10 1 second High
Card seconds remaining
Batch 4321 2 4 3 hours Low
Job hours remaining

Each column of these tables is described below:

Service: The name of the service that has SL.As associated
therewith.

Unique Identifier (UID): A unique identifier used to iden-
tify the service. In this example, ‘1234’ means the credit card
service.

Transaction ID: The specific transaction being processed,
because the service may be instantiated more than once.

SLA: The SLA metric associated with the transaction.

Current Status How much time is left before the SLA will
fail.

Flag: Failed, Critical, High, Medium, Low. Based on the
current status, this indicates the priority that should be given
to the network traffic QoS at this point in time. It is noted that
other embodiments could use similar grading factors, and that
animplementation of this invention need not use exactly these
terms.

Regardless, SLA QoS system 92 continually updates the
table(s) and updates the priority flag based on current pro-
cessing. In this example, the credit card service, transaction 1,
will fail the service level in one second, so the flag is changed
to ‘high’—showing that there is a need to push the QoS ofthe
network traffic associated with the service to be a high prior-
ity. The batch job service flag remains low due to the remain-
ing time before SLA failure. It is further noted that, in another
embodiment, the timing between polls can be modified based
on the SLA. For example, the batch job may only need to be
polled every 30 minutes, whereas the credit card service may
need to be polled every second. Such polling frequency modi-
fication can be executed simply, using a variety of well-
known methods.

SLA insertion system 94 can be implemented via software
in the application which initiates network data transfers. In
this invention, the system will insert a unique identifier into
the transport layer 100 (also shown as transport layer 78 of
FIG. 4) of each data packet being sent, so as to associate it
with the service for which the network connection is being
used. SLA insertion system 94 may read database 98 from the
SLA QoS system 92 to find the UID of the service to embed
into the packets being sent. For example, all network packets
associated with the credit card service are given the UID of
‘1234’. Tt can be recognized that SLA insertion system 94
may be implemented in software, hardware (including firm-
ware), or various combinations of associated logic.

Network packet inspection system 96 may be embedded
into network hardware 92 such as key routers and/or switches

US 9,065,772 B2

11

102 within the IT environment. Much as a router looks at the
network layer to determine routing of TCP/IP packets, net-
work packet inspection system 96 looks at transport layer 100
to determine whether the UID has been set. If a UID is found,
and optionally if not, network packet inspection system 96
looks at the database 98 to determine whether there is a flag to
determine overall priority of the network packet. If a flag is
found, network packet inspection system 96 uses the flag to
change the QoS of the packet to improve bandwidth or
throttle other (less important) network communications.
Iustrative Implementation

The invention is typically implemented through one or
more of the three systems identified above with an associated
method. FIG. 6 shows an example of two services 110A-B
(also referred to herein as Service 1 and Service 2) with a
breakdown of the network communications upon which both
services rely. In this example, Service 1 requires two network
transfers of data between Virtual Local Area Networks
(VLANs) R1 and a separate data transfer R2. Service 2
requires a data push to the port R2-R3.

Referring back to FIG. 5, when a new service is rolled out,
these relationships may be calculated, either manually by the
software/IT designer, or by automatic means. A determina-
tion can then be made as to which packets need to have the
UID inserted. Networks that are not within the control of the
enterprise, for example, do not need to be analyzed by net-
work packet inspection system 96. Once this determination is
completed, such information may be fed to the SLA QoS
system 92 such that it knows which data transfers affect the
service. SLA QoS system 92 may optionally be updated (e.g.,
periodically, continuously, etc.) as to current processing sta-
tus of each business process or service. This can be achieved
by communication to a submission engine or job scheduler
(e.g., a service request system. It may also communicate
directly to the key application server that is managing each
service to determine completion state. In either case, database
98 may be updated. Next, SLA insertion system 94 will be
embedded into each computer that initiates a data connection
(e.g., acredit card authorization system). Then, SLA insertion
system 94 adds the UID to each data packet before transmis-
sion.

In a typical embodiment, network packet inspection sys-
tem 96 functionality can be included in any key routers or
switches along the path of possible communications bottle-
necks. Such network packet inspection system 96 function-
ality can be integrated as a hardware appliance or included as
part of the router or switch software. Network packet inspec-
tion system 96 uses database 98 to make decisions for QoS
priority. It is noted that “database” as used in this description
could take on a variety of forms, including databases such as
IBM® DB2® (IBM, DB2, and related terms are trademarks
of IBM Corp. in the United States and/or other countries), or
it could take on other forms such as purely memory-resident
data structures allowing for rapid recall and correlation of
relevant information.

Regardless, FIG. 7 depicts an illustrative method flow dia-
gram outlining the process steps to be used in accordance with
the embodiments of the present invention. It is noted that one
or more of these steps could be rearranged without loss of
functionality.

Step S1: “Determine current SL.As” is generally (but not
necessarily) performed only once. This could be entered
manually by a system administrator, or it could be captured
through automated means (e.g. extracted from a table of
SLAs). Furthermore, since periodic SLA changes may occur,

10

40

45

50

12

updates can be captured through either push or pull of such
information. Regardless of form, this step captures the base
SLAs for each service.

Step S2: Determine current SLA attainments. The SLA
QoS system communicates with the job scheduler, portal, or
application running the service to determine whether the ser-
vice is being executed. If the service can be executed concur-
rently by more than one thread, the QoS system chooses a
transaction identifier and also stores the identifier in the data-
base.

Step S3: The SLA QoS system continually updates and
stores the SLA current attainment and flag information into
the database.

Step S4: Assuming that all packets associated with services
have the QoS field in the transport field set (by the insertion
system), the network packet inspection system running on the
router scans each incoming packet.

Step S5: For each packet found, the network packet inspec-
tion system checks the database to determine what the relative
priority of the QoS should be for that packet and modifies the
QoS accordingly.

Step S6: The network packet inspection system may look at
current bandwidth utilization to determine whether throttling
of'non-service aligned packets is required (e.g., personal web
browsing, Domain Name System (DNS) requests, email,
etc.).

Step S7: Network packet inspection system modifies the
QoS flag of each packet as necessary to optimize throughput
of networking packets.

Through use of the techniques outlined herein, service
level achievement can be strengthened and overall revenue/
cost structures optimized for the adopting organization. Fur-
thermore, this approach can benefit (among others) organiza-
tions that have large heterogeneous traffic mixes, such as are
often found with providers who offer various cloud comput-
ing services.

Referring now to FIG. 8, another method flow diagram
according to an embodiment of the present invention is
shown. In step T1 is a set of service level requirements (as
identified from at least one SLLA) associated with a resource
(e.g., an application, a process, a service, etc.) running in a
networked computing environment is identified in a computer
data structure. In step T2, the set of service level requirements
are mapped to a set of QoS parameters associated with a
transport layer of the networked computing environment. In
step T3, a current performance of the resource within the
transport layer is determined. In step T4, it is determined
whether the current performance meets the set of service level
requirements. If so, the process can be repeated for other
resources running in the networked computing environment.
However, responsive to the set of service level requirements
not being met, the set of QoS parameters is adjusted in step
T5. In general, the adjusting of the QoS parameters can
include one or more of the following: assigning a higher
priority level to a set of data packets being sent pursuant to the
running of resource in the networked computing environ-
ment, allocating additional bandwidth to the set of data pack-
ets, and/or modifying a Quality of Service flag associated
with the set of data packets.

While shown and described herein as a dynamic QoS
modification solution, it is understood that the invention fur-
ther provides various alternative embodiments. For example,
in one embodiment, the invention provides a computer-read-
able/useable medium that includes computer program code to
enable a computer infrastructure to provide dynamic QoS
modification functionality as discussed herein. To this extent,
the computer-readable/useable medium includes program

US 9,065,772 B2

13

code that implements each of the various processes of the
invention. It is understood that the terms computer-readable
medium or computer-useable medium comprise one or more
of any type of physical embodiment of the program code. In
particular, the computer-readable/useable medium can com-
prise program code embodied on one or more portable stor-
age articles of manufacture (e.g., a compact disc, a magnetic
disk, a tape, etc.), on one or more data storage portions of a
computing device, such as memory 28 (FIG. 1) and/or storage
system 34 (FIG. 1) (e.g., a fixed disk, a read-only memory, a
random access memory, a cache memory, etc.).

In another embodiment, the invention provides a method
that performs the process of the invention on a subscription,
advertising, and/or fee basis. That is, a service provider, such
as a Solution Integrator, could offer to provide dynamic QoS
modification functionality. In this case, the service provider
can create, maintain, support, etc., a computer infrastructure,
such as computer system 12 (FIG. 1) that performs the pro-
cesses of the invention for one or more consumers. In return,
the service provider can receive payment from the consumer
(s) under a subscription and/or fee agreement and/or the ser-
vice provider can receive payment from the sale of advertis-
ing content to one or more third parties.

In still another embodiment, the invention provides a com-
puter-implemented method for dynamic QoS modification.
In this case, a computer infrastructure, such as computer
system 12 (FIG. 1), can be provided and one or more systems
for performing the processes of the invention can be obtained
(e.g., created, purchased, used, modified, etc.) and deployed
to the computer infrastructure. To this extent, the deployment
of'a system can comprise one or more of: (1) installing pro-
gram code on a computing device, such as computer system
12 (FIG. 1), from a computer-readable medium; (2) adding
one or more computing devices to the computer infrastruc-
ture; and (3) incorporating and/or modifying one or more
existing systems of the computer infrastructure to enable the
computer infrastructure to perform the processes of the inven-
tion.

As used herein, it is understood that the terms “program
code” and “computer program code” are synonymous and
mean any expression, in any language, code, or notation, of a
set of instructions intended to cause a computing device hav-
ing an information processing capability to perform a particu-
lar function either directly or after either or both of the fol-
lowing: (a) conversion to another language, code, or notation;
and/or (b) reproduction in a different material form. To this
extent, program code can be embodied as one or more of: an
application/software program, component software/a library
of functions, an operating system, a basic device system/
driver for a particular computing device, and the like.

A data processing system suitable for storing and/or
executing program code can be provided hereunder and can
include at least one processor communicatively coupled,
directly or indirectly, to memory elements through a system
bus. The memory elements can include, but are not limited to,
local memory employed during actual execution of the pro-
gram code, bulk storage, and cache memories that provide
temporary storage of at least some program code in order to
reduce the number of times code must be retrieved from bulk
storage during execution. Input/output and/or other external
devices (including, but not limited to, keyboards, displays,
pointing devices, etc.) can be coupled to the system either
directly or through intervening device controllers.

Network adapters also may be coupled to the system to
enable the data processing system to become coupled to other
data processing systems, remote printers, storage devices,
and/or the like, through any combination of intervening pri-

10

15

20

25

30

35

40

45

50

55

60

65

14

vate or public networks. Illustrative network adapters
include, but are not limited to, modems, cable modems, and
Ethernet cards.

The foregoing description of various aspects of the inven-
tion has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed and, obviously, many
modifications and variations are possible. Such modifications
and variations that may be apparent to a person skilled in the
art are intended to be included within the scope of the inven-
tion as defined by the accompanying claims.

What is claimed is:

1. A computer-implemented method for dynamically
modifying quality of service levels for a resource running in
a networked computing environment, comprising:

determining a data packet, from a plurality of data packets,

that requires insertion of a unique identifier into a trans-
port layer of the networked computing environment, the
unique identifier associating the data packet with the
resource;

adding the unique identifier into the transport layer for the

determined data packet;

checking a database to determine a level of priority for the

data packet has been set;
identifying, in a computer data structure, a set of service
level requirements associated with the resource;

mapping the set of service level requirements to a set of
quality of service parameters associated with the trans-
port layer;

determining a current performance of the resource within

the transport layer;

determining whether the current performance meets the set

of service level requirements;

updating, responsive to a change in the service level

requirements, the mapping of the set of service level
requirements to the set of quality of service parameters;
and

adjusting, responsive to the set of service level require-

ments not being met, the set of quality of service param-
eters, the adjusting comprising raising the level of pri-
ority for the data packet.

2. The computer-implemented method of claim 1, the
resource comprising at least one of the following: an appli-
cation, a process, or a service.

3. The computer-implemented method of claim 1, the set of
service level requirements being identified from at least one
service level agreement associated with the resource.

4. The computer-implemented method of claim 1, further
comprising inserting a unique identifier into the transport
layer for each of a set of data packets, the unique identifier
being sent pursuant to the running of the resource in the
networked computing environment.

5. The computer-implemented method of claim 4, the
adjusting comprising allocating of additional bandwidth to
the set of data packets.

6. The computer-implemented method of claim 4, the
adjusting comprising modifying a quality of service flag asso-
ciated with the set of data packets.

7. The computer-implemented method of claim 1, wherein
aservice solution provider provides a computer infrastructure
that performs the method for one or more consumers.

8. A system for dynamically modifying quality of service
levels for a resource running in a networked computing envi-
ronment, comprising:

a bus;

a processor coupled to the bus; and

US 9,065,772 B2

15

a memory medium coupled to the bus, the memory

medium comprising instructions to:

determine a data packet, from a plurality of data packets,
that requires insertion of a unique identifier into a
transport layer of the networked computing environ-
ment, the unique identifier associating the data packet
with the resource;

add the unique identifier into the transport layer for the
determined data packet;

check a database to determine a level of priority for the
data packet has been set;

identify, in a computer data structure, a set of service
level requirements associated with the resource;

map the set of service level requirements to a set of
quality of service parameters associated with the
transport layer;

determine a current performance of the resource within
the transport layer;

determine whether the current performance meets the
set of service level requirements;

update, responsive to a change in the service level
requirements, the mapping of the set of service level
requirements to the set of quality of service param-
eters; and

adjust, responsive to the set of service level requirements
not being met, the set of quality of service parameters,
the adjusting comprising raising the level of priority
for the data packet.

9. The system of claim 8, the resource comprising at least
one of the following: an application, a process, or a service.

10. The system of claim 8, the set of service level require-
ments being identified from at least one service level agree-
ment associated with the resource.

11. The system of claim 8, the memory medium further
comprising instructions to insert a unique identifier into the
transport layer for each of a set of data packets being sent
pursuant to the running of the resource in the networked
computing environment.

12. The system of claim 11, the memory medium further
comprising instructions to allocate additional bandwidth to
the set of data packets.

13. A computer program product for dynamically modify-
ing quality of service levels for a resource running in a net-
worked computing environment, the computer program prod-

uct comprising a computer readable storage device, and 45

program instructions stored on the computer readable storage
device, to:

16

determine a data packet, from a plurality of data packets,
that requires insertion of a unique identifier into a trans-
port layer of the networked computing environment, the
unique identifier associating the data packet with the
5 resource;
add the unique identifier into the transport layer for the
determined data packet;
check a database to determine a level of priority for the data
packet has been set;
identify, in a computer data structure, a set of service level
requirements associated with the resource;
map the set of service level requirements to a set of quality
of service parameters associated with the transport
layer;
determine a current performance of the resource within the
transport layer;
determine whether the current performance meets the set
of service level requirements;

20 update, responsive to a change in the service level require-

ments, the mapping of the set of service level require-
ments to the set of quality of service parameters; and
adjust, responsive to the set of service level requirements
not being met, the set of quality of service parameters,
the adjusting comprising raising the level of priority for
the data packet.
14. The computer program product of claim 13, the
resource comprising at least one of the following: an appli-
cation, a process, or a service.

25

30
15. The computer program product of claim 13, the set of

service level requirements being identified from at least one
service level agreement associated with the resource.
16. The computer program product of claim 13, the com-
35 puter readable storage device further comprising instructions
to:
insert a unique identifier into the transport layer for each of
aset of data packets being sent pursuant to the running of
the resource in the networked computing environment;
40 and
modify a quality of service flag associated with the set of
data packets.
17. The computer program product of claim 16, the com-
puter readable storage device further comprising instructions
to allocate additional bandwidth to the set of data packets.

#* #* #* #* #*

